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Abstract
This paper introduces a cost-efficient active
learning (AL) framework for classification, fea-
turing a novel query design called candidate set
query. Unlike traditional AL queries requir-
ing the oracle to examine all possible classes,
our method narrows down the set of candidate
classes likely to include the ground-truth class,
significantly reducing the search space and la-
beling cost. Moreover, we leverage conformal
prediction to dynamically generate small yet re-
liable candidate sets, adapting to model enhance-
ment over successive AL rounds. To this end,
we introduce an acquisition function designed
to prioritize data points that offer high informa-
tion gain at lower cost. Empirical evaluations
on CIFAR-10, CIFAR-100, and ImageNet64x64
demonstrate the effectiveness and scalability of
our framework. Notably, it reduces labeling cost
by 42% on ImageNet64x64.

1 Introduction
Deep neural networks owe much of their success to large-
scale annotated datasets (Deng et al., 2009b; Kirillov
et al., 2023; OpenAI, 2023; Radford et al., 2021). Scal-
ing datasets is crucial for improving both of their perfor-
mance (Hestness et al., 2017; Zhai et al., 2022) and robust-
ness (Fang et al., 2022). However, the resources demanded
for manual annotation pose a significant bottleneck, par-
ticularly in fields requiring expert input like medical data.
In response to these challenges, cost-efficient methods for
dataset collection, such as semi-automatic labeling (Kim
et al., 2024; Qu et al., 2024; Wang et al., 2024), synthetic
data generation (Liu et al., 2019; Tran et al., 2019), and
active learning (AL) (Ash et al., 2020; Kirsch et al., 2019;
Sener & Savarese, 2018; Settles, 2009; Sinha et al., 2019;
Wang & Ye, 2015) have been studied.
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This paper investigates AL for classification, where a train-
ing algorithm selects informative samples from the data
pool and queries annotators for their class labels within
a limited budget. We focus on improving the design of
annotation queries, emphasizing their critical role. To be
specific, we consider image classification of L classes. In
the conventional design of query, an annotator is asked to
choose a class in the list of L classes. Here, the effort
needed to review the entire class list and identify the cor-
rect class increases as the list size L increases; according to
an information-theoretic analysis (Hu et al., 2020), the cost
of choosing among L options is log2 L. To address this is-
sue of growing annotation cost, recent studies (Hu et al.,
2020; Kim et al., 2024) employ a 1-bit query design asking
annotators to check if the top-1 model prediction is correct.
While this simplifies and speeds up annotation, it produces
weak supervision incompatible with standard classification
loss functions, necessitating specialized losses and algo-
rithms like contrastive loss and semi-supervised learning
techniques.

We propose candidate set query (CSQ), a novel AL query
design that remains cost-efficient with increasing classes
and integrates seamlessly with existing loss functions. CSQ
presents the annotator with an image and a narrowed set of
candidate classes, which is likely to include the ground-
truth class. If the ground-truth class is within these candi-
dates, the annotator selects from this smaller group; other-
wise, they select from the remaining classes. This query
approach can reduce labeling costs by reducing the search
space required for annotation, which is particularly effec-
tive in scenarios with a wide range of classes where the
search space for the annotator could be extensive. Fig-
ure 1(left) compares CSQ with the conventional query in
AL for classification to show its efficiency.

In the CSQ framework, the design of the candidate set is
crucial for its effectiveness. Too many candidates unneces-
sarily increase the labeling costs. On the other hand, too
few candidates are likely to omit the ground-truth class,
requiring an additional query to identify the ground-truth
class among the remaining classes, which is more expen-
sive than the conventional query. To enhance the effective-
ness of the CSQ framework, we propose to construct can-
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didate sets guided by prediction uncertainty from a trained
model using conformal prediction (Shafer & Vovk, 2008;
Angelopoulos et al., 2023). Conformal prediction aims at
constructing a set of predictions including the true class,
where each set is properly sized based on the certainty of
the model about the input. This strategy enables flexible
adjustment of the candidate set for each sample, expand-
ing it for an uncertain sample to include the true label and
shrinking it for more certain one to reduce the labeling cost.
Furthermore, we optimize the level of certainty in confor-
mal prediction to minimize the labeling cost for each round.
Therefore, this candidate set construction adapts to the in-
creasing accuracy of the model over successive AL rounds,
refining the candidate set as the model improves.

Last but not least, we propose a new acquisition function
designed to maximize the cost efficiency of CSQ. Conven-
tional acquisition functions in AL are designed to favor
samples with high estimated information gain, assuming
uniform annotation costs across all samples. On the other
hand, in CSQ, the labeling cost for each sample varies ac-
cording to the size of its candidate set. Thus, we propose
an acquisition function that evaluates samples based on the
ratio of estimated information gain to labeling cost. Specif-
ically, we combine the conventional acquisition function
score, which indicates the estimated information gain, with
the estimated cost derived from the candidate set, favoring
samples that maximize information gain per unit cost. This
cost-efficient acquisition function can incorporate with any
sample-wise acquisition score, ensuring the selection of
both informative and cost-efficient samples.

The proposed method achieved state-of-the-art per-
formance on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009), and Ima-
geNet64x64 (Chrabaszcz et al., 2017). We verify the
effectiveness and robustness of CSQ through extensive
experiments with varying datasets, acquisition functions,
and budgets. Notably, CSQ achieves the same performance
as the conventional query on ImageNet64x64 at only 42%
of the cost, showing its scalability. Our ablation studies
demonstrate that both our candidate set construction
and sampling strategy contribute to the performance.
Furthermore, the necessity of CSQ is demonstrated by a
user study involving 40 participants. In short, the main
contribution of this paper is four-fold:

• We propose a novel query design for active learning,
where the annotator is presented with an image and a
narrowed set of candidate classes that are likely to in-
clude the ground-truth class. This approach, termed
CSQ, significantly reduces labeling cost by minimiz-
ing the search space the annotator needs to explore.

• To maximize the advantage of CSQ, we propose to

utilize conformal prediction to dynamically generate
small yet reliable candidate sets optimized to reduce
labeling costs, adapting to the evolving model through-
out successive AL rounds.

• We propose a new acquisition function that prioritizes
a data point expected to have high information gain rel-
ative to its labeling cost, enhancing cost efficiency.

• The proposed framework achieved state-of-the-art per-
formance on diverse image classification datasets,
CIFAR-10, CIFAR-100, and ImageNet64x64, showing
its effectiveness and generalizability.

2 Related Work
Acquisition functions in AL. The key to AL is to select
and annotate the most informative samples (Settles, 2009;
Dasgupta, 2011; Hanneke et al., 2014). To assess infor-
mativeness, various acquisition functions have been pro-
posed, considering either the uncertainty of model predic-
tions (Asghar et al., 2017; He et al., 2019; Ostapuk et al.,
2019; Fuchsgruber et al., 2024; Kim et al., 2024; Cho et al.,
2024; Kim et al., 2023), diversity in feature space (Sener &
Savarese, 2018; Sinha et al., 2019; Yehuda et al., 2022), or
both (Ash et al., 2020; Hwang et al., 2022; Wang & Ye,
2015; Wang et al., 2019; Hacohen et al., 2022; Hacohen &
Weinshall, 2023a;b). Disagreement-based AL and its vari-
ants are supported by rigorous theoretical learning guar-
antees (Hanneke et al., 2014; Krishnamurthy et al., 2019).
However, these methods assume uniform sample costs and
select based solely on the amount of information. We
emphasize that the labeling cost required for each sample
varies and prioritize samples offering the best information-
to-cost ratio.

Efficient query design. Designing efficient annotation
queries reduces the annotation costs of crafting datasets. In
AL, diverse types of queries have been investigated, includ-
ing conventional classification queries, one-bit queries (Hu
et al., 2020; Joshi et al., 2010) asking for yes or no an-
swers, multi-class queries (Hwang et al., 2023) identify-
ing all classes within a set of multiple instances, relative
quires (Qian et al., 2013) asking for similarity of triplets,
and correction queries (Kim et al., 2024) utilizing pseudo
labels from the model. While these query methods require
tailored loss functions, our candidate set query (CSQ) is
cost-efficient and provides complete supervision, integrat-
ing seamlessly with existing loss functions. The approach
closely related to CSQ is the n-ary query (Bhattacharya
& Chakraborty, 2019), which reduces the search space by
asking for the correct class among top-n predictions of the
model. However, the n-ary query uses a fixed number of
top-n predictions for all data without considering individ-
ual sample difficulty. CSQ, on the other hand, adjusts the
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Figure 1: Conventional query versus CSQ. (left) While the conventional query presents all possible options to annotators,
CSQ leverages the knowledge of the model to offer narrowed options that are likely to include the ground-truth label,
thereby reducing the annotation time. (right) By conducting a user study on 40 participants, we demonstrate that the
labeling cost increases logarithmically to the candidate set size, which closely aligns with the information-theoretic cost
suggested by Hu et al. (2020) with a correlation coefficient of 0.97. Note that as the labeling cost increases per sample, the
overall labeling cost increases significantly when multiplied by the total number of labeled samples. Further details of the
user study are provided in Sec. 4.2 and Appendix A.

candidate set size based on sample difficulty and model
performance using conformal prediction. Through rigor-
ous comparisons, we demonstrate that CSQ achieves a su-
perior model performance at the same cost compared to the
previous query designs.

Conformal prediction (CP). CP enables us to quantify
uncertainty in predictions with an associated confidence
level (Shafer & Vovk, 2008). Recent advances in CP em-
power classifiers to generate predictive sets that include
the true label with a probability chosen by the user (An-
gelopoulos et al., 2020; 2023). In the field of AL, non-
conformity measurements from CP are employed in the ac-
quisition function to select informative samples (Matiz &
Barner, 2020). In contrast, we utilize CP not only to de-
velop a cost-efficient acquisition function but also to design
an efficient candidate set query reducing the labeling cost.

3 Proposed Method
We consider general classification tasks such that for in-
put x and a categorical variable y ∈ Y = {1, 2, . . . , L},
a model parameterized by θ predicts the class of the input
as argmaxy∈Y Pθ(y|x). We study an active learning (AL)
scenario conducted over R rounds. In each round r, a bud-
get of B samples is actively selected from the unlabeled
data pool X using an acquisition function. This actively
selected set Ar is then labeled by an annotator to form the
labeled dataset Dr with labeling cost Cr, and is used to up-
date the model. Let θr denote the model trained on the ac-
cumulated labeled data up to round r,

⋃r
i=0 Di. Our goal is

to maximize the performance of θr, while minimizing the
accumulated cost

⋃r
i=0 Ci. The key aspect of the proposed

Algorithm 1 Active learning with candidate set query
Require: The number of AL rounds R, per-round budget B, un-

labeled data pool X , Initial labeled dataset D0.
1: Train the initial model θ0 on D0.
2: for r = 1, 2, . . . , R do
3: Select the top B samples Ar ⊂ X with highest acquisition

scores gcost(x). ▷ Sec. 3.3
4: Construct cost-efficient candidate set Ŷ (x) for each x ∈

Ar . ▷ Sec. 3.2
5: Query annotator for label y of x ∈ Ar using candidate set

Ŷ (x) to form Dr .
6: Get model θr trained on

⋃r
i=0 Di.

7: end for
8: Return Final model θR.

method is the candidate set query (CSQ), which reduces
Cr by narrowing the set of candidate classes presented to
annotators. For simplicity, we omit the round index r from
θr in the remainder of this section.

In the following, we first introduce CSQ and discuss its
efficiency in labeling cost (Sec. 3.1). Then, we present
a method to construct a candidate set based on the pre-
diction uncertainty of a trained model for a given sample
(Sec. 3.2). Lastly, we introduce an acquisition function de-
signed to consider cost efficiency as well as information
gain (Sec. 3.3). The overall pipeline of the CSQ framework
is summarized in Algorithm 1.

3.1 Candidate set query

CSQ for an instance x is associated with a (non-empty)
candidate set Ŷ (x) ⊆ Y such that 1 ≤ |Ŷ (x)| ≤ L. CSQ
first asks the annotator to choose the ground-truth class in
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Ŷ (x) (if exists) or to verify the absence of the ground-truth
label in Ŷ (x), i.e., the annotator is first asked to pick an
option out of (k + 1) choices, where k = |Ŷ (x)|. Only if
the absence of the ground-truth class in the candidate set is
verified, the annotator is further asked to select the ground-
truth class from the remaining ones Y \ Ŷ (x). To ana-
lyze the cost of CSQ, following the information-theoretic
cost model (Hu et al., 2020) and our empirical study in Ta-
ble. 1, we assume that the cost of choosing an option out
of k many candidates is log2 k. Then, the labeling cost
Γ(Ŷ (x), y) of CSQ for input x, ground-truth label y, and
candidate set Ŷ (x) can be obtained as:

Γ(Ŷ (x), y)=

{
log2(k + 1) if y ∈ Ŷ (x)

log2(k + 1) + log2(L− k) otherwise
.

(1)
The conventional query in AL is a special case of CSQ
where Ŷ (x) = Y , and it is inefficient since the annota-
tor must search through the entire set of size L with a cost
of log2 L. The following theorem reveals the condition un-
der which the expected cost of CSQ offers an improvement
over that of the conventional query.

Theorem 3.1. Assume the information-theoretic cost
model (Hu et al., 2020) of selecting one out of L possible
options to be log2 L. Let L ≥ 2 be the number of classes,
k = |Ŷ (x)|, and α be the probability that the candidate set
Ŷ (x) does not include the ground-truth class of instance x.
For the expected cost of conventional query Ccon and that
of candidate set query Ccsq, if

log2(k + 1)

log2 L
< 1− α , (2)

then Ccsq(L,x, α) < Ccon(L,x).

Proof. Recalling the definition of α, we have
Ccsq(L,x, α) = (1 − α) log2(k + 1) + α{log2(k +
1) + log2(L − k)} from Eq. (1). As L − k < L, the
cost ratio of Ccsq(L,x, α) to Ccon(L,x) for instance x is
induced as:

Ccsq(L,x, α)

Ccon(L,x)
=

log2(k + 1) + α log2(L− k)

log2 L

<
log2(k + 1)

log2 L
+ α . (3)

Although we adopt the cost model from Hu et al. (2020),
Theorem 3.1 holds for any cost model that increases mono-
tonically with the number of options.

Remark 3.2. If we constrain all candidate set sizes k to
be fixed, then 1 − α corresponds to the top-k accuracy pk
of the model. Therefore, when pk ≥ logL(k + 1), CSQ

consistently offers an improvement over the conventional
query. For example, in datasets such as CIFAR-10 (L =
10), CIFAR-100 (L = 100), and ImageNet (L = 1000),
if the model has a top-1 accuracy (i.e., k = 1) of at least
30.1%, 15.1%, and 10.0% respectively, then CSQ always
provides an improvement.

The above proof and remark demonstrate that under moder-
ate conditions, CSQ is more efficient than the conventional
query. As described in Eq. (3), the cost of CSQ decreases
as both α and k become smaller. However, since k and α
are inversely related, balancing the trade-off between α and
k is essential to fully leverage CSQ. Also, fixing candidate
set sizes as in Remark 3.2 is suboptimal because it does not
consider the uncertainty of individual samples. In the fol-
lowing section, we introduce our candidate set construction
method, which both reflects the uncertainty of each sample
and automatically balances the trade-off between α and k.

3.2 Construction of cost-efficient candidate set

As shown in Eq. (1) and Theorem 3.1, a candidate set
needs to be both small and accurate in covering the ground-
truth class. To do so, we propose using conformal pre-
diction (Romano et al., 2020) to get a reliable and cost-
optimized prediction set using the trained model θ of the
previous round.

Calibration set collection. Conformal prediction requires
a labeled set for calibration that has not been used during
the model training phase; this set must follow the same
distribution as the target data for prediction (Vovk et al.,
1999; Angelopoulos et al., 2023). To achieve this, we ran-
domly select ncal samples from the actively selected data
Ar and annotate them within the given budget to form
Dcal = {(xi, yi)}ncal

i=1. The calibration set Dcal is used for
conformal prediction and candidate set optimization, which
will be explained in the following sections. Note that Dcal
also contributes to model training after candidate set con-
struction.

Conformal prediction. Using θ from the previous round
and calibration set Dcal randomly sampled from Ar, we
obtain a collection of conformal scores s := {si}i∈[ncal]

,
where si := 1 − Pθ(yi | xi) for (xi, yi) ∈ Dcal. Then, we
obtain the (1−α) empirical quantile Q̂(α) of s, indicating
that at least 100 × (1 − α)% of the scores in s are smaller
than Q̂(α). This quantile Q̂(α) is given as,

Q̂(α) := min
s∈s

{
s :

1

ncal

∑
s′∈s

(
1[s′ ≤ s]

)
≥ 1− α

}
, (4)

where α ∈ (0, 1) is an error rate hyperparameter, and 1[·]
is an indicator function. Then, we define the candidate set
for unlabeled data x as follows:

Ŷθ(x, α) :=
{
y : Pθ(y|x) ≥ 1− Q̂(α), y ∈ Y

}
. (5)
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Previous study (Vovk et al., 1999; Angelopoulos et al.,
2023) proved that the candidate set includes the correct la-
bel with the probability not less than 1− α, which is,

P
(
y ∈ Ŷθ(x, α)

)
≥ 1− α . (6)

This ensures the inclusion of the ground-truth classes even
under model overconfidence, while adaptively reflecting
uncertainties throughout the AL process. More detailed
procedure of conformal prediction is in Appendix C.

Cost-optimized error rate selection. Although conformal
prediction aims at adjusting candidate set Ŷθ(x, α) to fit the
condition of α as in Eq. (6), it does not take into account the
size k of the candidate set. The efficiency of CSQ improves
as both α and the candidate set size k decrease, as shown
in Eq. (3). Since α and k are inversely related, finding an
optimal hyperparameter α to reduce the labeling cost is not
straightforward. Hence, we optimize α to minimize label-
ing cost for the calibration set Dcal for further improvement
of CSQ efficiency. To be specific, α is optimized by

α∗ := argmin
α∈(0,1)

∑
(x,y)∈Dcal

Γ(Ŷθ(x, α), y) , (7)

where Γ(x, y, Ŷθ(x, α)) is the labeling cost in Eq. (1). By
optimizing α in this way, we utilize conformal prediction to
construct candidate sets in a more cost-efficient manner, as
the error rate is tailored to minimize the expected labeling
cost for each round. Notably, if we define the corner case
Ŷθ(x, 0) = Y , CSQ includes the conventional query at α =
0 within the search space for α∗. This makes CSQ is at
least as efficient as, and in general more efficient than, the
conventional query.

Note that to construct the candidate set query, the cali-
bration set Dcal is required to calculate (1 − α∗) quantile
in Eq. (4). Thus, when getting annotations of Dcal in the
calibration set collection step, candidate set query of the
current round cannot be applied. To avoid this circular
dependency, the quantile from the previous round is used
when labeling Dcal.

3.3 Cost-efficient acquisition function

Since the labeling cost of each sample varies in CSQ, we
propose to consider the cost for active sampling. We imple-
ment an acquisition function that evaluates samples based
on the ratio of the estimated information gain to the esti-
mated labeling cost. The information gain is quantified us-
ing established acquisition scores from prior research like
entropy and SAAL (Kim et al., 2023), though our approach
can integrate any acquisition scoring function. Given a
conventional acquisition score gscore(x), the proposed cost-
efficient acquisition function gcost is given as,

gcost(x) :=
(1 + gscore(x))

d

log2(k + 1) + α∗ log2(L− k)
, (8)

where d is a hyperparameter adjusting the influence of
gscore(x) and α∗ is the optimized error rate hyperparam-
eter obtained by Eq. (7). The denominator is an ex-
pected cost derived from our cost model (Eq. (1)), consid-
ering two cases: the correct label is included or excluded
from the candidate set, which is (1 − α∗) log2(k + 1) +
α∗ {log2(k + 1) + log2(L− k)}. This expected cost as-
sumes the candidate set to include the ground-truth class
with a probability of 1 − α∗, which is supported by the
coverage guarantee in Eq. (6).

4 Experiments

4.1 Experimental setup

Datasets. We use three image classification datasets:
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100
(Krizhevsky et al., 2009), and ImageNet64x64 (Chrabaszcz
et al., 2017). CIFAR-10 comprises 50K training and 10K
validation images across 10 classes. CIFAR-100 contains
the same number of images as CIFAR-10, but is associated
with 100 classes. ImageNet64x64 is a downsampled
version of ImageNet (Deng et al., 2009a) with a resolution
of 64 × 64, which consists of 1.2M training and 50K
validation images with 1000 classes. Following previous
studies, we evaluate a model using the validation split of
each dataset.

Implementation details. For CIFAR-10 and CIFAR-
100, we adopt ResNet-18 (He et al., 2016) as a clas-
sification model. We train it for 200 epochs using
AdamW (Loshchilov & Hutter, 2019) optimizer with an
initial learning rate of 1e−3, decreasing by a factor of 0.2 at
epochs 60, 120, and 160. We apply a weight decay of 5e−4
and a data augmentation consists of random crop, random
horizontal flip, and random rotation. For ImageNet64x64,
we adopt WRN-36-5 (Zagoruyko, 2016), and train it for
30 epochs using AdamW optimizer with an initial learn-
ing rate of 8e−3. We apply a learning rate warm-up for 10
epochs from 2e−3. After the warm-up, we decay the learn-
ing rate by a factor of 0.2 every 10 epochs. We adopt ran-
dom horizontal flip and random translation as data augmen-
tation. For all the datasets, we use Mix-up (Zhang et al.,
2018), where a mixing ratio is sampled from Beta(1, 1).
We set the size of the calibration dataset ncal to 500 for
CIFAR-10 and CIFAR-100, and 5K for ImageNet64x64.
For CIFAR-10 and CIFAR-100, d in Eq. (8) is set to 0.3
for all samplings. For ImageNet64x64, d is set to 1.2. The
analysis of the impact of d and the dataset-wise guidelines
for determining d are provided in Appendix H.

Active learning protocol. For CIFAR-10, we conduct 10
AL rounds of consecutive data sampling and model up-
dates, while for CIFAR-100, we perform 9 AL rounds. In
both cases, the per-round budget is 6K images. For Ima-
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Figure 2: Accuracy (%) versus relative labeling cost (%) for conventional query (CQ) and the proposed candidate set query
(CSQ) with different acquisition functions. CSQ approaches (blue lines) consistently outperform the CQ baselines (red
lines) by a significant margin across various cost budgets, acquisition functions, and datasets. For ImageNet64x64, we
report results of computationally tractable methods only.

geNet64x64, we conduct 16 AL rounds with a per-round
budget of 60K images. The detailed budget configuration
for the three datasets is shown in Table 4. In the ini-
tial round, we randomly sample 1K images for CIFAR-
10, 5K images for CIFAR-100, and 60K images for Ima-
geNet64x64. In each round, the model is evaluated based
on two factors: its accuracy (%) on the validation set, and
the accumulated annotation cost required to train it. The
annotation cost is defined as a relative labeling cost (%)
compared to the cost of labeling the entire training set us-
ing the conventional query, given by N log2 L, where N is
the size of the entire training set, and L is the number of
classes. We conduct all experiments with three indepen-
dent trials with different random seeds and report the mean
and standard deviation to ensure reproducibility.

Baseline methods. We compare our candidate set query
(CSQ) with the conventional query (CQ) in combination
with various sampling strategies. To be specific, we employ
random (Rand), entropy (Ent), BADGE (Ash et al., 2020),
ProbCover (Yehuda et al., 2022), and SAAL (Kim et al.,
2023) as the sampling strategies. Cost(·) indicates the pro-
posed cost-efficient sampling (Eq. (8)) using conventional
acquisition scores; e.g., Cost(SAAL) is the one combined
with SAAL. We denote the combination of the query and
sampling method with ‘+’, e.g., CSQ+Rand is a candidate
set query with random sampling.

4.2 Experimental results

Candidate set query vs. Conventional query. In Fig-
ure 2, we compare the performance of the candidate set
query (CSQ) with the conventional query (CQ) on CIFAR-
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Figure 3: Average size of the candidate set and accu-
racy (%) of our method with Cost(Ent) sampling on Im-
ageNet64x64. Our candidate set design adapts to the in-
creasing accuracy of the model over AL rounds, reducing
the size of the candidate set as the model improves, thereby
enhancing efficiency of the labeling process.

Table 1: The results of the user study showing the annota-
tion time (second) and accuracy (%) for the same images
with varying size of class options (candidate set). This re-
sult demonstrates that a small candidate set improves both
labeling efficiency and accuracy. The results also align
closely with theoretical costs, as shown in Figure 1(right).

Set size 4 8 16 32

Time (s) 69.4±13.8 91.5±27.3 116.9±29.6 166.9±30.8

Acc. (%) 100.0±0.0 98.5±3.2 99.5±1.5 95.5±5.2

10, CIFAR-100, and ImageNet64x64 with different acqui-
sition functions. CSQ approaches consistently outperform
the CQ approaches across various acquisition functions and
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Figure 4: (a) Contribution of each component of our method, measured by accuracy (%) versus relative labeling cost
(%) (left), and relative labeling cost (%) versus AL rounds (right) on CIFAR-100. The results compare the full method
(CSQ+Cost(Ent)), the method without acquisition function in Eq. (8) (CSQ+Ent), without α optimization in Eq. (7), where
α is fixed to 0.1 (CSQ(α = 0.1)+Ent), and without CSQ (CQ+Ent). All components of our method lead to steady per-
formance improvement over varying rounds. (b) Relative labeling cost (%) at the fifth round with varying calibration set
sizes ncal in Eq. (4) on CIFAR-100. The dashed line indicates the relative labeling cost (%) of CQ+Ent. Our method shows
consistent performance with varying calibration set sizes.

datasets, demonstrating the general effectiveness of our
method. Notably, CSQ reduces the labeling cost of CQ by
43%, 54%, and 42% on CIFAR-10, CIFAR-100, and Im-
ageNet64x64, respectively. This is promising as it shows
that the same volume of labeled data can be obtained at
roughly half the cost, without introducing any label noise
or sample bias. Notably, the performance gain of CSQ in-
creases as the model improves, as it is tailored to the im-
proved model. In the appendix, we also present experi-
ments on a text classification task (Figure 13) showing the
generalization ability of the proposed method to the natu-
ral language domain. Additionally, we provide the zoomed
version of Figure 2 in Figure 16 and Figure 17.

Progressive reduction in candidate set size. The effec-
tiveness of CSQ stems from its ability to reduce labeling
costs through smaller candidate sets. To verify this, Fig-
ure 3 shows the average size of the candidate sets and ac-
curacy (%) of our method with varying AL rounds on Im-
ageNet64x64. After the first round, CSQ achieves a suf-
ficiently small candidate set size and continues to reduce
it as accuracy improves. More results on CIFAR-10 and
CIFAR-100 are shown in Figure 8.

Empirical validation for our cost model. We conduct a
user study with 40 annotators who label samples using can-
didate sets of various sizes; see Appendix A for more de-
tails. The results in Table 1 suggest that reducing candidate
sets improves both labeling efficiency and accuracy. They
also align closely with the theoretical cost (Hu et al., 2020),
as shown in Figure 1(right).

4.3 Ablation studies

Contribution of each component. Figure 4a demon-
strates the contribution of each component in our method
across varying AL rounds: candidate set query (Eq. (5)),
cost optimization of α (Eq. (7)), and the proposed ac-
quisition function (Eq. (8)). The results show consistent
performance improvements from each component in ev-
ery round. The performance gap between CQ+Ent and
CSQ(α = 0.1)+Ent verifies the efficacy of proposed CSQ
framework, which provides the largest improvement. The
gap between CSQ(α = 0.1)+Ent and CSQ+Ent shows the
impact of α optimization, offering modest but steady gains
across rounds. Finally, the gap between CSQ+Ent and
CSQ+Cost(Ent) shows the effectiveness of our acquisition
function, particularly from 4 to 6 rounds.

Impact of calibration set size. In Figure 4b, we evaluate
the relative labeling cost (%) at the fifth round with varying
calibration set sizes ncal in Eq. (4) to assess its impact on
the performance on CIFAR-100. As shown in Figure 4b,
our method shows consistent performance, varying by less
than 2%p as the calibration set size changes from 0.1K to
2K, and significantly outperforms the baseline.

Ablation study on candidate set design. Figure 5 il-
lustrates the effectiveness of using conformal prediction
(Conformal (α = 0.1)) for candidate set construction on
CIFAR-100, compared to baselines: Conventional (using
all classes), Top1 (top-1 prediction), Top10 (top-10 predic-
tions), and Oracle (smallest top-k set always containing the
ground truth). Note that Oracle represents an unattainable
upper bound requiring knowledge of the ground truth. Top1
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Figure 5: Impact of the candidate set design evaluated on CIFAR-100 using conventional query with all classes
(Conventional), top-1 prediction from model (Top1), top-10 prediction from model (Top10), our method with conformal
prediction with fixed α = 0.1 (Conformal(α = 0.1)), and the smallest top-k prediction sets always including ground-truth
class (Oracle). For comparison, the same entropy sampling is used to keep the accuracy at each round constant, focusing
solely on the labeling cost and isolating the effect of the candidate set design. (a) Our method constantly outperforms
the baselines in accuracy (%) relative to labeling cost (%). (b) Our design achieves a greater reduction in labeling cost
compared to the baselines. (c) Our candidate set effectively includes the ground-truth class in over 90% of cases (= 1−α),
even when model accuracy is low.

and Top10 are variants of the n-ary query (Bhattacharya
& Chakraborty, 2019) baseline. For consistency, we fixed
α = 0.1 in Eq. (5). Figures 5a and 5b show that con-
formal prediction consistently reduces labeling cost com-
pared to the baselines. While Top10 is effective in the early
rounds and Top1 becomes more efficient as the model im-
proves, our method adapts throughout and outperforms all
baselines in every round. Figure 5c demonstrates that with
α = 0.1, our method includes the ground-truth class in over
90% of cases, aligning with Eq. (6), while the top-k base-
lines show lower inclusion rates, especially in early and
middle rounds. This demonstrates that conformal predic-
tion effectively adjusts candidate set sizes based on sample
uncertainty, ensuring ground-truth inclusion and improving
labeling efficiency. Examples of the candidate sets on Ima-
geNet64x64 are presented in Figure 9.

Impact of cost-efficient acquisition function. In Table 2,
we investigate the impact of the proposed cost-efficient
sampling (Sec. 3.3) on CIFAR-100, in terms of accuracy
per relative labeling cost. Our cost-efficient sampling strat-
egy consistently improves the cost-effectiveness across var-
ious conventional acquisition functions.

4.4 Additional experiments

In the appendix, we provide additional results verifying
the impact of cost-optimized error rate selection in Eq. (7)
(Figure 10), generalization ability to language domain (Fig-
ure 13), and robustness to label noise (Figure 14) and class
imbalance (Figure 15).

Table 2: Effectiveness of the proposed cost-efficient sam-
pling (Cost(·)) with CSQ evaluated on CIFAR-100, mea-
sured by accuracy per cost.

Sampling 3 rd round 6 th round 9 th round

Ent 1.74 1.36 1.24
Cost(Ent) 2.09 1.56 1.30
ProbCover 1.72 1.47 1.30
Cost(ProbCover) 2.10 1.66 1.32
SAAL 1.83 1.37 1.25
Cost(SAAL) 2.12 1.64 1.31

5 Conclusion
We have introduced candidate set query, an active learning
framework that efficiently reduces the labeling cost by nar-
rowing down the candidate set likely to include the ground-
truth class. We also have proposed a novel acquisition
function that balances model performance and labeling cost
by taking expected candidate set sizes into account. Ex-
periments on CIFAR-10, CIFAR-100, and ImageNet64x64
confirm the effectiveness of our framework.

Limitations and future work. One limitation is that
the proposed acquisition function lacks theoretical guaran-
tee for label complexity (Dasgupta, 2011; Hanneke et al.,
2014) at this point. Establishing a theoretical understand-
ing to quantify the cost required to achieve a target perfor-
mance remains an interesting direction for future work.

8



Enhancing Cost Efficiency in Active Learning with Candidate Set Query

6 Impact Statements
This research contributes to effectively reducing annotation
costs in data collection for real-world applications. To the
best of our knowledge, we do not identify any significant
negative societal implications that need to be addressed.
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H., and Langford, J. Active learning for cost-sensitive

classification. Journal of Machine Learning Research,
20(65):1–50, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lewis, D. D. Reuters-21578 text categoriza-
tion test collection, 1997. URL http:
//www.daviddlewis.com/resources/
testcollections/reuters21578/.

Liu, Y., Li, Z., Zhou, C., Jiang, Y., Sun, J., Wang, M., and
He, X. Generative adversarial active learning for unsu-
pervised outlier detection. IEEE Transactions on Knowl-
edge and Data Engineering, 32(8):1517–1528, 2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In Proc. International Conference on Learn-
ing Representations (ICLR), 2019.

Matiz, S. and Barner, K. E. Conformal prediction based
active learning by linear regression optimization. Neuro-
computing, 388:157–169, 2020.

Ning, K.-P., Zhao, X., Li, Y., and Huang, S.-J. Active
learning for open-set annotation. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 41–49, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ostapuk, N., Yang, J., and Cudré-Mauroux, P. Activelink:
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—Appendix—

A Details of user study

(b) Example queries in CIFAR-100

Q. Select the class that corresponds to the image.

(a) Questionnaire with four candidates 𝑘 = 4

Figure 6: Questionnaire and examples used in the user study. (a) Each question contains an instruction, an image, and a
set of candidates. In this case, the candidate set size is 4. (b) We utilize 20 images in CIFAR-100, each with a resolution of
128 x 128 pixels.

We conduct a user study to examine how the size of a candidate set, k in Sec. 3.1, affects the annotation time in practice.
Figure 6 presents examples of the questionnaire and all images used in our user study. To facilitate easy comparison with
the theoretical costs (Hu et al., 2018), we set the candidate set sizes to 4, 8, 16, and 32. To be specific about Figure 6, we
use CIFAR-100 images resized to 128×128 using super resolution1 to enhance visibility for annotators. We first randomly
select 20 classes in CIFAR-100 and choose one image per class to organize the questionnaires. For small-sized candidate
sets, we ensure the inclusion of the ground truth by randomly trimming around it when generating the candidate sets.

We divide 44 annotators into four groups of 11 for each candidate set size to perform labeling tasks. To account for
potential outliers, we exclude the results of the annotators whose time taken deviates the most from the average time in
each group. Table 3 shows that as the candidate set size increases, the time per query increases and the accuracy decreases.
In addition, on the right side of Table 3, the comparison between the experimental costs and theoretical costs reveals a
significant correlation of 0.97.

Table 3: User study for different sizes of candidate set query.

k Total time (s) Time per query (s) Accuracy (%) Experimental Theoretical

4 69.4±13.8 3.47±0.69 100.0±0.0 2.0 2
8 91.5±27.3 5.20±1.36 98.5±3.2 2.6 3

16 116.9±29.6 6.94±1.48 99.5±1.5 3.4 4
32 166.9±30.8 8.35±1.54 95.5±5.2 4.8 5

1https://www.kaggle.com/datasets/joaopauloschuler/cifar100-128x128-resized-via-cai-super-resolution
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B Implementation details and configuration
Table 4 presents the configuration of our main experiments for each dataset. In all experiments, we fixed the per-round
budget, which limits the number of annotated instances per active learning (AL) round. Given this budget constraint, we
compute the labeling cost for each AL round to assess labeling efficiency. The batch size for CIFAR-10 and CIFAR-100
was determined to be 128, while that for ImageNet64x64 is set to 128. We normalized the input image to ensure the
stability of the training. We trained our classification model on CIFAR-10 and CIFAR-100 using NVIDIA RTX 3090 and
on ImageNet64x64 using 4 NVIDIA A100 GPUs in parallel. The training requires about 5 GPU hours for CIFAR-10 and
CIFAR-100, and about 1.5 GPU days for ImageNet64x64.

Table 4: Detailed dataset and budget configuration for the proposed scenario.

Dataset L log2L Size Cost of full label # of rounds Per-round budget

CIFAR-10 10 3.322 50K 166.1K 10 6K
CIFAR-100 100 6.644 50K 332.2K 9 6K

ImageNet64x64 1000 9.966 1.2M 12.7M 16 60K

Code. This part demonstrates the reproducibility of our work by providing comprehensive details on the source code
release. We have made available the entire framework, which includes the data sampling methods, evaluation procedures,
and the overall training pipeline. Our aim is to ensure that other researchers can easily replicate and build upon our results.
To get started with running the code, please refer to the script.sh and readme.md files. readme.md contains the
instructions to comprehend and execute our experiments seamlessly, and script.sh includes some example commands.
To understand our proposed method better, you can examine the Python script al/strategy_dtopk.py. This file
includes the implementation details of our active learning strategies, particularly candidate set query design. Furthermore,
our code can run on CIFAR-10, CIFAR-100 2, and ImageNet64x64 3, which are available online. Note that you can modify
the running configuration such as dataset, sampling method, and budget through command-line arguments.

C Additional clarification on candidate set construction

The detailed procedure of computing Q̂(α) in Eq. (4). We begin with computing the collection of conformal scores s
for the calibration dataset Dcal. For each data point (xi, yi) ∈ Dcal, the conformal score is defined as:

si := 1− Pθ(yi | xi), for i = 1, 2, · · · , ncal , (9)

where ncal = |Dcal|. Using these scores, we define the empirical distribution function Fn(s), which measures the proportion
of scores less than or equal to a given value s. Formally, Fn(s) is expressed as:

Fn(s) =
1

ncal

ncal∑
i=1

1[si ≤ s] , (10)

where 1[·] is an indicator function. The (1 − α) empirical quantile is then defined as the smallest score si such that the
proportion of scores satisfying si ≤ s is at least (1 − α). Mathematically, this is given as mini∈[ncal] {Fn(si) ≥ 1− α},
where [ncal] = {1, 2, · · · , ncal}.

Q̂(α) := min
i∈[ncal]

{Fn(si) ≥ (1− α)} . (11)

Note that Eq. (11) is equivalent to Eq. (4).

D Impact of proposed cost-efficient sampling across different sampling strategies
Figure 2 illustrates that combining CSQ with our cost-efficient sampling method results in a significant performance im-
provement. Additionally, Figure 4a examines how the cost-efficient sampling improves performance compared to using

2https://www.cs.toronto.edu/˜kriz/cifar.html
3https://patrykchrabaszcz.github.io/Imagenet32/
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Figure 7: Comparison of different sampling methods and their cost-sampling variants on CIFAR-100. Each subplot shows
a pair of corresponding methods.

CSQ alone. In this section, we compare different sampling strategies when combined with their cost-efficient variants.
Notably, the performance of cost-efficient sampling improves substantially when paired with Ent, ProbCover, and SAAL.
This demonstrates that our cost-efficient acquisition method ( Eq. (8)) can be integrated with any sample-wise acquisi-
tion strategy, including but not limited to entropy-based sampling, ProbCover (Yehuda et al., 2022), and SAAL (Kim
et al., 2023). However, BADGE (Ash et al., 2020) does not involve sample-wise acquisition and instead performs random
sampling based on k-means++ initialization. This explains why CSQ+Cost(BADGE) does not outperform CSQ+BADGE.
Nevertheless, this is not a major drawback, CSQ+BADGE itself without cost-efficient sampling still achieves significantly
better performance compared to CQ+BADGE.

E Change in candidate set size across rounds
In Figure 8, we show that the CSQ effectively reduces the candidate set size k throughout AL rounds on CIFAR-10,
CIFAR-100, and ImageNet64x64 datasets. After the first round, CSQ achieves a sufficiently small candidate set size and
continues to reduce it as accuracy improves, thereby enhancing labeling efficiency.
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(b) CIFAR-100
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Figure 8: Average size of the candidate set and accuracy (%) of our method with cost-efficient entropy sampling in varying
rounds on CIFAR-10, CIFAR-100, and ImageNet64x64. Our candidate set design adapts to the increasing accuracy of the
model over successive AL rounds, reducing it as the model improves.
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Figure 9: Examples of input images and their corresponding candidate sets constructed from our method in fifth round on
ImageNet64x64. The ground-truth class is highlighted in red (best viewed in color).

F Examples of constructed candidate sets
In Figure 9, we present example results showing input images and their corresponding candidate sets on ImageNet64x64.
Thanks to the conformal prediction, the proposed method allows for flexible adjustment of the candidate set for each
sample. For certain samples (Figure 9(left)), the candidate set is reduced to minimize labeling cost, while for uncertain
samples (Figure 9(right)), the candidate set is expanded to include the true label.

G Impact of cost-optimized error rate selection
In Figure 10, we present the impact of cost-optimized error rate selection as in Eq. (7), evaluated on CIFAR-100 using
entropy sampling, in terms of relative labeling cost (%). As shown in Figure 10a, the proposed optimization consistently
reduces labeling cost across all rounds by selecting the optimal α = α∗. In Figure 10b, the pink triangle indicate how the
most cost-effective α changes with each active learning round, showing that labeling costs vary depending on the chosen
α. Our method enhances cost efficiency by selecting the α∗ (blue square) in each round through cost optimization.

H Impact of hyperparameter d

Impact of informativeness-cost balancing hyperparameter d. The hyperparameter d in our acquisition function (Eq. (8))
balances the trade-off between labeling cost and the informativeness of a selected sample, requiring both factors to be
considered. We provide a comprehensive analysis showing the trend of performance in accuracy with varying d values
over AL rounds for CIFAR-10, CIFAR-100, and ImageNet64x64 in Figure 11. For CIFAR-10 (Figure 11a), both accuracy
and labeling cost remain robust to the change of d, varying only 0.5%p in accuracy. For CIFAR-100 (Figure 11b), the
overall performance is still insensitive yet slightly increasing as d decreases. For ImageNet64x64 (Figure 11c), on the other
hand, the performance decreases as d increases. Regarding that a larger d prioritizes more uncertain samples, this result
aligns with recent observations in AL that uncertainty-based selection performs better in scenarios with larger labeling
budgets (Hacohen et al., 2022).

Guidelines for selecting proper hyperparameter d. We provide the following guidelines for setting d. For datasets with
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Figure 10: Impact of cost-optimized error rate selection as in Eq. (7), evaluated on CIFAR-100 with entropy sampling.
(a) Relative labeling cost (%) versus AL rounds with different error rate α and the α∗ selected by the proposed cost
optimization (Eq. (7)). (b) Relative labeling cost per round (%) versus α across varying AL rounds. Labeling cost is
measured as the ratio compared to labeling all images in a single round using the conventional query. The pink triangle
represents the true optimal α minimizing the cost for sampled data, while the blue square represents the α∗ selected from
Eq. (7). The red dashed line indicates the baseline cost from the conventional query.
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Figure 11: Accuracy (%) versus relative labeling cost (%) with varying hyperparameter d in Eq. (8) across AL rounds,
evaluated on CIFAR-10, CIFAR-100 and ImageNet64x64 with CSQ+Cost(Ent). For our main experiments, we set d = 0.3
for CIFAR-10 and CIFAR-100, and d = 1.2 for ImageNet64x64.

fewer than 100 classes, d values between 0.3 and 1.0 may be effective, as they ensure robustness on simple datasets like
CIFAR-10 and reduce labeling costs on more complex datasets like CIFAR-100. For larger datasets closer in scale to
ImageNet, exploring d ≥ 1.0 can help further improve the model performance.

I Discussion on handling outliers and anomalous datapoints
Dealing with out-of-distribution (OOD) data points showing high uncertainty scores has been a chronic issue in active
learning and may affect the efficiency of candidate set query (CSQ). Recent open-set active learning approaches (Du et al.,
2021; Kothawade et al., 2021; Ning et al., 2022; Park et al., 2022; Yang et al., 2024) tackle this by filtering out OOD
samples during active sampling using an OOD classifier. Our CSQ framework integrates seamlessly with these methods,
focusing on labeling in-distribution (ID) samples to prevent cost inefficiencies.

However, as OOD classifiers are not flawless, some OOD samples may still be selected. One advantage of our method is
its ability to leverage the calibration set to capture information about such mixed OOD samples. This enables adjustments
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Figure 12: Comparison of candidate set query (CSQ) and conventional query (CQ) on CIFAR-100 with entropy sampling
(Ent) and cost-efficient entropy sampling (Cost(Ent)) varying AL rounds. A fixed number of samples are selected at each
AL round. (a) Accuracy (%) versus relative labeling cost (%) showing the accuracy per cost. (b) Accuracy (%) versus AL
rounds showing the accuracy varies with the number of samples. Note that the lines of CQ+Ent and CSQ+Ent completely
overlap, as they use the same sampling method. (c) Relative labeling cost (%) versus AL rounds.

such as increasing the OOD classifier threshold to exclude more OOD-like data or incorporating the OOD ratio into the
alpha optimization process in Eq. (7). Optimizing the combination of OOD and ID classifier scores within the calibration
set or designing better OOD-aware queries presents promising future research directions.

J Compatibility between candidate set construction and uncertain samples
Figure 12 compares CSQ and conventional query (CQ) on CIFAR-100 with entropy-based sampling (Ent) and our acqui-
sition function with entropy measure (Cost(Ent), Eq. (8)) across AL rounds, with a fixed number of samples per round.

Our acquisition function provides superior accuracy per cost. The comparison between CSQ+Cost(Ent) and CSQ+Ent
demonstrates that the proposed acquisition function reduces labeling costs with only a marginal accuracy trade-off.

Candidate set query (CSQ) can reduce labeling costs even for uncertain samples. The comparison between CQ+Ent
and CSQ+Ent demonstrates that CSQ effectively reduces labeling costs, even with uncertainty-based sampling methods
like entropy sampling. This shows that CSQ can narrow down annotation options even for uncertain samples. Note that
CSQ+Ent shows the same accuracy as CQ+Ent, since they used the same sampling method.

K Experiments in language domain
Dataset. The R52 dataset (Lewis, 1997) is a subset of the Reuters-21578 (Lewis, 1997) news collection, specifically
curated for text classification tasks. It comprises documents categorized into 52 distinct classes, with a total of 9,130
documents. The dataset is divided into 6,560 training documents and 2,570 testing documents. Each document is labeled
with a single category, and the categories are selected to ensure that each has at least one document in both the training and
testing sets. This structure makes the R52 dataset particularly suitable for evaluating text classification models.

Implementation details. We adopt an SVM model (Cortes, 1995) with sigmoid kernel for classification. We conduct 11
AL rounds of consecutive data sampling and model updates, where the per-round budget is 600. The hyperparameter d for
our acquisition function is set as 1.2. In the initial round, we randomly sample 300 samples. In each round, the model is
evaluated based on three factors: its accuracy (%) and Micro-F1 (%).

Figure 13 presents a comparison of candidate set query (CSQ) and conventional query (CQ) on the text classification
dataset (R52) with random sampling (Rand), entropy sampling (Ent), and our acquisition function with entropy measure
(Cost(Ent), Eq. (8)) across AL rounds. CSQ approaches consistently outperform the CQ baselines by a significant margin
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Figure 13: Comparison between conventional query (CQ) and candidate set query (CSQ) with random sampling (Rand),
entropy sampling (Ent), and cost-efficient entropy sampling (Cost(Ent) on text classification task with R52 dataset. (a)
Accuracy (%) versus relative labeling cost (%). (b) Micro-F1 (%) versus relative labeling cost (%). CSQ approaches (blue
lines) consistently outperform the CQ baselines (red lines) by a significant margin across various budgets and acquisition
functions.

across various budgets and acquisition functions. Especially at round 10, CSQ+Rand reduces labeling cost by 65.6%p
compared to its conventional query baseline. The result demonstrates that the proposed CSQ framework generalizes to the
text classification domain.

L Experiments on real-world datasets
Experiment on datasets containing label noise. We evaluate the candidate set query (CSQ) framework on CIFAR-100
with noisy labels, simulating a scenario where human annotators misclassify images into random classes with a noise rate
ϵ. This is modeled using a uniform label noise (Frénay & Verleysen, 2013) with ϵ set to 0.05 and 0.1. Note that this scenario
is unfavorable for CSQ, as a misclassifying annotator would reject the actual true label even if the candidate set includes
it. Figure 14 compares CSQ and conventional query (CQ) on CIFAR-100 with noisy labels using entropy sampling (Ent)
and our acquisition function with entropy measure (Cost(Ent)) across 2, 6, and 9 rounds.

Despite the disadvantageous scenario, our method (CSQ+Cost(Ent)) reduces labeling cost compared to the baseline
(CQ+Ent) across varying AL rounds and noise rates. At round 9, CSQ+Cost(Ent) achieves cost reductions of 33.4%p
and 27.4%p at noise rates of 0.05 and 0.1, respectively. It also consistently outperforms the baseline in terms of accuracy
per labeling cost, demonstrating the robustness of CSQ. Additionally, CSQ has the potential to reduce label noise, as nar-
rowing the candidate set can lead to more precise annotations. Our user study (Table 1) shows that reducing candidate set
size improves annotation accuracy, suggesting that CSQ can further enhance performance by reducing label noises.

Experiment on datasets containing class imbalances. Figure 15 compares candidate set query (CSQ) and conventional
query (CQ) on CIFAR-100-LT (Cui et al., 2019), a class-imbalanced version of CIFAR-100, using entropy sampling (Ent),
and our acquisition function with entropy measure (Cost(Ent)) across AL rounds. The experiments use imbalance ratios
(i.e., ratios between the largest and smallest class sizes) of 3, 6, and 10. Note that the maximum AL rounds vary with the
imbalance ratio due to dataset size, with a maximum of 4 rounds for ratios of 3 and 6, and 6 rounds for a ratio of 10.

The result shows that our method (CSQ+Cost(Ent)) reduces labeling cost compared to the baselines (CQ+Ent) by significant
margins across varying AL rounds and imbalance ratios. Specifically, at round 4, CSQ+Cost(Ent) achieves cost reductions
of 31.1%p and 29.2%p at imbalance ratios of 6 and 10, respectively. In terms of accuracy per labeling cost, CSQ+Cost(Ent)
consistently outperforms the baseline, demonstrating the robustness of the CSQ framework in class-imbalanced scenarios.
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Figure 14: Comparison between conventional query (CQ) and candidate set query (CSQ) with entropy sampling (Ent) and
the proposed acquisition function with entropy measure (Cost(Ent) on CIFAR-100 with label noise across AL rounds with
varying noise level: (a) Noise rate of 0.05. (b) Noise rate of 0.1. The proposed CSQ+Cost(Ent) consistently outperforms
CSQ+Ent across various AL rounds and noise rates.
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Figure 15: Comparison between conventional query (CQ) and candidate set query (CSQ) with entropy sampling (Ent)
and the proposed acquisition function with entropy measure (Cost(Ent) on CIFAR-100-LT, a variant of CIFAR-100 with
class imbalance, across AL rounds with varying imbalance level: (a) Imbalance ratio of 3. (b) Imbalance ratio of 6. (c)
Imbalance ratio of 10. The proposed approach (CSQ+Cost(Ent)) consistently outperforms the baseline (CSQ+Ent) across
various AL rounds and noise rates. Note that the maximum AL rounds vary with the imbalance ratio due to dataset size,
with a maximum of 4 rounds for ratios of 3 and 6, and 6 rounds for a ratio of 10.
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Figure 16: Accuracy (%) versus relative labeling cost (%) on CIFAR-10.
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Figure 17: Accuracy (%) versus relative labeling cost (%) on CIFAR-100.
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